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The human innate immune response, particularly the type-hterferon (IFN) response, is
highly robust and effective rst line of defense against wiis invasion. IFN molecules are
produced and secreted from infected cells upon virus infeébn and recognition. They then
act as signaling/communication molecules to activate an ativiral response in neighboring
cells so that those cells become refractory to infection. Ravious experimental studies
have identi ed the detailed molecular mechanisms for the IR signaling and response.

However, the principles underlying how host cells use IFN tcommunicate with each

other to collectively and robustly halt an infection is not nderstood. Here we take a

multiplex network modeling approach to provide a theoretial framework to identify key
factors that determine the effectiveness of the IFN resporesagainst virus infection of a
host. In this approach, we consider the virus spread among hst cells and the interferon

signaling to protect host cells as a competition process on awo-layer multiplex network.

We focused on two types of network topology, i.e., the Erds-Rényi (ER) network and the
Geometric Random (GR) network, which represent the scenas when infection of cells

is mostly well mixed (e.g., in the blood) and when infectios spatially segregated (e.g., in
tissues), respectively. We show that in general, the IFN rpense works effectively to stop

viral infection when virus infection spreads spatially (aast likely scenario for initial virus
infection of a host at the peripheral tissue). Importantlyye show that the effectiveness of
the IFN response is robust against large variations in thestance of IFN diffusion as long
as IFNs diffuse faster than viruses and they can effectivelpduce antiviral responses
in susceptible host cells. This suggests that the effectiveess of the IFN response is
insensitive to the speci ¢ arrangement of host cells in pepheral tissues. Thus, our work
provides a quantitative explanation of why the IFN responsean serve an effective and
robust response in different tissue types to a wide range ofiral infections of a host.

Keywords: immune response, interferon, viral infection, mathema tical modeling, multiplex network

INTRODUCTION

Virus infections and the resulting diseases are major ehglts that our society faces today One
important determinant of the outcome of an infection is thenstte immune response, particularly
the type-I interferon (IFN) response (“the IFN response” fopsaf. The IFN response is a highly
optimized and general response that provides a critical nsélof defense against a wide variety
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of virus infection @). Failure to mount an e ective IFN response METHODS
against virus leads to systematic infection, while exeed§iN .
production leads to pathogenicity, severe symptoms or eveIhe MUItIpIeX Nef[work ModeI_Framework .
fatality (2—4). It has been shown that the ability to evade host" 9€neral; the muitiplex Or?wetwork is modeled by a family
IFN response is an important determinant of viral replicationof graphs Gmn, .Vm, En/ where all graphs share the
(5-7), transmission §), and host species range of viral infection gy me set of nodes eV E)”Dlvz D .. DV D [n]
(9). Viruses that lack the ability to evade the innate immune, oyr network models, we consider two layers of networks,
response are not able to infect and replicate in a hoS8]. e the infection and the protection layers, and four typés o
This demonstrates that the IFN response plays a crucial role igg|is, j.e., susceptible/target cells (S), infected cellprijected
protecting hosts from virus invasion. o ~ cells (P), and recovered/dead cells (R). The two layers share
IFN molecules belong to a group of signaling proteinsygges (representing host cells) in the network; however, the
known as cytokines, used by the immune system for celly,q jayers may have di erent edges that represent the infectio
to-cell communication and induction of protective response.or the protection of susceptible cells in the infection layer
Upon infection, detection of viral RNA/DNA in the host cell g4 the protection layer, respectively. The nodes have aserag
triggers a signaling cascade and gene regulation, reguitin degrees ofk; and kg in the infection and the protection

the production of IFNs 10). These IFNs then exit the infected layer, respectively. Viruses and IFN molecules are not elplici

cell and act as signaling molecules to bind to surface rewmoconsidered; instead, we assume that the contacts betwizenad

Iocatgd on the membrangs of h,OSt cells ,("’,1 process termed tr&‘élls and susceptible cells are mediated by viruses and IFNs
IFN signaling), leading to induction of antiviral genes atimlis through two layers in the networkFigure 1)

an ant_iviral state in _those cell&_l). If an IEN mol_ecule_re_aches In this work, we consider two types of graphs for the two layers
an uninfected cell, i.e., paracrine .S|gnalllng, this antalvstate ¢ - Latwork. The rst type is a well-mixed intralayer topology
renders the cell refractory to viral infection. If an IFN neclule modeled by the Erdés-Rényi (ER) gran, p) (18) in which a
binds to the receptor of the infected cell that produces it, i.e link exists between any two nodes with a uniform probabifity
autocrine signaling, it inhibits viral replication and deases the Then, the average degree of the ER grapids.n  1/p  np
quantity of viral progeny being shed from that cef) (Although The second type is a spatial graph modeled by the 2-dimensional

the molecular mechanisms of_the IFN response in indiv.iduabeometric Random (GR) gragi(n, r) (19, in which a link exists
cells have been well characterizéd)( the collective dynamics between two nodes only when their 2-dimensional Euclidean

of the host cell response arising from communications thitoug . . .

IFN signaling and how the IFN response can e ectively an istance is smaller than the pre xed rangewhich we term

robustlg sto gor suppress viral infecﬁons especiall durilr):g t he radius of di usion. The radii of di usion arer, and g in
y stop PP b Y the infection layer and the protection layer, respectiveljie T

initial period of viral exposure in di erent peripheral tissuesd - - . -
. average degrees in the infection layer and the protectioarlay
di erent types of host cells are not understood. 2 2
re calculated akf D .n 1/ npri < and ke D

. . .a
To address these questions, we take a mathematical modelin U re2 npre 2, respectively. Simulation procedures of

approach using multiplex networks. Previous modeling works or%he netwo?k models ;ré described i?/\'Huang et al)(

virus dynamics and the IFN response focused on interpreting The following ordinary di erential equations (ODEs) desceib

in vitro experiments andn vivo systematic infection dynamics h Id model of the infecti d .
(6, 13-17). For example, several elegant studies combining both €mean eldmodeto the Infection and protection processes we
' y ' consider in the networks:

single-cell experiments and mathematical modeling showed th

importance of the timing of the IFN response in determining 18 Sl 'Sl
the outcome of an infection of a population of cel® @nd the dt

importance of the IFN signaling in regulating the population dl

response despite stochasticity in the single-cell level #3donse dt D s g
(16, 17). Two modeling works incorporated the IFN response dp

into within-host viral dynamic models and showed that theNIF a2 S
response can reduce the peak viral load during an in uenza dR

infection and explain the viral load plateau observed after s D gl

peak viremia {3, 15. In this work, we introduce a multiplex

network approach to understand virus invasion of a host andn this model, susceptible cells (S) are infected at rater
the immediate IFN response. In this framework, we assume ibecome protected at rate. Since we mainly focus on the
the multiplex network that virus and IFN molecules mediateinitial infection dynamics, generation and death of susidspt
contacts between cells through the infection layer and theells are ignored. Infected cell) die at per capita rate to
protection layer, respectively. By considering di erent tymés become cells in theR class. We assume that protected cells
network topologies, i.e., re ecting host cell contact paigr remain protected for simplicity, although anti-viral resporige
we show how the IFN response can e ectively and robustlyprotected cells can be switched o over timg, (L5. Again,
respond to virus infection especially in the initial site ofali since we are mostly interested in the initial infection dymies,
exposure/infection where host cells are likely arrangedialbat ignoring the transition from protected cells to susceptibldsce
in the peripheral tissue. is a reasonable assumption. Here, we mainly focus on how the
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FIGURE 1 | The multiplex network framework for the dynamics of virus faction and the IFN response. In the framework, cells are repsented as nodes of the
network. Two layers are considered, i.e., the infection lar and the protection layer. The nodes are shared between thewvo layers. Infected cells (I) produce viruses
and IFNs (not considered explicitly in the model). Virusesfett susceptible cells (S) to become infected cells (1) thrgh the infection layer, whereas IFNs spread and
signal to susceptible cells to turn them to protected cellsR) through the protection layer. Infected cells die over tim become cells in the R class. We consider the
impact of the overlap between the two layers and the topologyf the two layers on the effectiveness of the IFN response to ep viral spread on the network.

topology of a network impacts on the e ectiveness of IFN toand how it depends on the similarity between the two layers are
halt an infection through protecting susceptible cells, iteke  derived previously in Huang et aR().

paracrine IFN signaling. The impact of IFN on already-infecte . o

cells can be considered by extending the model with anothdri€terogeneity in the Susceptibility of

infected class, i.e., infected cells that are at an antisiate, HO0St Cells

and assume that infected cells in this class have a reducald viTo evaluate the impact of heterogeneity in the susceptibilfty
production. However, this makes many analytical derivation$iost cells, e.g., due to heterogenous receptor expressi@ns, w
impossible. Note that as a common practice in the networkassign each cell with a speci ¢ rate of infectionand this rate is
modeling approach, we rescale the four state variables a¢iaens drawn from a gamma distribution:

total population size, suchth&C I CPCRD 1. ThenS I, P,

andRin our network models represent the fraction of cells that P()D 1 k 1g -
are in their corresponding states. 0 k k
Analytical Derivations wherek and are the shape and scale parameters, respectively,

To evaluate the impact of IFN on the infection threshold in theand 0 is the gamma function. In this way, the extent of
mean eld/ODE model, we rst de neR, as the reproductive heterogeneity is determined by the shape paraméteifhe
number of the virus in the absence of IFN. We also refer thismallerk, the more heterogenous.

guantity as a measure of virus infectivity. It can be calmdas: We follow the derivations in Huang et ak() to calculate the
values oR, for the simulations with heterogenous infection rate.
First, we calculate the probability that a susceptible celbirec

R D infected when it is connected to an infected cell in the infatt
layer. Because infected cells die after a xed period of tinke1
We then de ne a quantityR for IFN similar asR, forvirusas:  gay in the simulation, this probability can be calculated ab
, 1 e D1 e ,whosemean,,isgiven by:
ReD — Z, Z, 1
D P( )db D 1 e - Kle “db

Then, Re is the average number of cells that an infected cell 0 0 0k
protects over its life time. Note that, protected cells do nwttier D1 1 _
generate IFN and thus IFN signaling does not propagate in the .1C /K

absence of further infection. ThuBf is a single step measure of B
the e ectiveness of the IFN signaling for individual cellpesse, ~Then, the value oR, is the product of and the average degree
and we refer this parameter as the individual-cell e ectiverafs  of the infection layerR D k; .
the IFN signaling.
The infection threshold ; of the ODE model can be derived RESULTS
as: ¢ D , e, as long as the infectivity parameteris .
greater than the rate of recovery the virus can cause sustained Well-Mixed Model and a Network Model
infection. Note the expression is independent of parametée., With Two Random (ER) Graphs
the parameter for the impact of IFN on protecting target cellsWe rst focused on multiplex networks where both layers are ER
The infection threshold . of the network with two ER graphs graphs as baseline models. In this framework, contacts batwee
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FIGURE 2 | The effectiveness of the IFN response under different assurtipns and topologies of the network. In general, protection bsusceptible cells by IFN
signaling, i.e., the IFN response considered in this study, erks most effectively when viruses spread in a spatial manméi.e., in the GR network)(A) The nal sizes
(fractions) of cells that are infected (and ultimately dedat the end of the infectionR(1 ), in the homogenous mixing model (blue line; partly overthby the red line) and
the network models (in red, yellow, and black). Results arev@rage of 1,000 simulations.(B) The nal sizes (fractions) of cells that are protected at ther& of infection,
P( ), in the homogenous mixing model (blue line) and the networkodels (in red, yellow and black). The individual-cell efféveness of the IFN signalingRr is set to
seven. The network model with two ER graphs (results of the nael with two independent layers are in red; results of the moel with two identical layers are in yellow),
and the network model with two GR networks (in black). Lines enote analytical results derived in Huang et al20), whereas dots denote simulation results.

host cells (through viruses and IFNs) are random and therén this case, the infection threshold becomes much larganth

is no spatial structure in the contacts. These assumptions atke threshold in the absence of IFN response, suggesting that

reasonable for infections where cells move and contactettfibr  IFN can prevent virus infection (the green linefigure 2A). As

cells (through viruses and IFNs) roughly randomly, for exden  we showed previously, IFNs inhibit viral spread e ectively when

HIV infection in the blood. In our multiplex network model, IFNs reach the same subset of cells as viruses and thus rddice t

the topologies of the graphs in the two layers, i.e., the cantaeiumber of susceptible cells that an infected cell can infé@k (

structure between cells, can be explicitly modeled, in cattia Interestingly, these conclusions are similar to those inevjmus

well-mixed models or single-layer network models. Thiswaio network modeling work analyzing the impact of the spread of

us investigate how the IFN signaling through the protectiapdr  epidemic awareness on the transmission of infectious disease

competes with virus infection through the infection layertheé  (21). Further, we found that when viruses can cause infectien, i

level of individual infected cells. > ., thereis a sharp increase in the number of protected cells
We considered two scenarios of the relationship between th@igure 2B). This increase in protected cells prevents susceptible

two layers, i.e., the topologies of the two layers are indepetaf  cells from being infected and thus the proportion of infectetls

or identical to each other. We simulated the model and analyzeincreases slowly with increaseRn(Figure 2A).

how the fractions of infected and then dead cells (a measditreso

size of total infected cells) and protected ceRél() and P(1 ),

respectively) changes with the infectivity of the virus (swad . .

asR; see Method). When the two layers are independent of\ Network Model With TWO Spatial (GR)_

each other, the subset of target cells that an IFN molecute cd&araphs—IFN Can Effectively Halt Infection

reach is independent from the subset that a virus (producedVhen Infection Is Spatial

from the same cell as the IFN molecule) reaches, and thug theFor most viruses, initial viral infection events at the sifeviral

is no direct competition for target cells between viruses anéntry are expected to occur at the peripheral tissue where host

IFNs at the individual infected cell level. We found that thecells are spatially structured. Spatial infection spread hes a

predicted infection threshold value for virus infectivityg, i.e., been shown to be a prominent infection mode of many viruses,

the threshold value that viruses can cause sustained iofect especially for virus infections in the tissug2(24). To evaluate

in a host, is independent of the parameter that governs thehe e ectiveness of the IFN response in tissue, we constructed a

IFN protection of target cells, i.€.,. On the other hand, when multiplex network where the two layers are assumed to be GR

the two layers are identical (i.e., a more biologically rafev graphs (see Methods). Inthe GR graph, we de ne nodes on a two-

assumption), IFN molecules will reach to the same subset aefimensional space and a maximal distance (i.e., radius ofviru

target cells as the viruses produced from the same infected cer IFN di usion) such that an edge exists between two nodes
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FIGURE 3 | Visualization of simulations of the multiplex networkgA) In the network with two ER graphs, most of the nodes are eitheniected and then dead (red) or
protected (green) at the end of infection(B) In the network with two GR graphs, most of the nodes are suscepble (gray) at the end of infection. Protection of host
cells by the IFN signaling leads to an outer layer of protectecklls that contain the infection at the local area of the indl infected nodes, i.e., the initial site of viral entry|

only if the distance between two nodes is shorter than théusad a variety of viruses. This suggests that the IFN responseswork
of di usion. e ciently and robustly in a wide range of host cell or tissue
We simulated the model and found that strikingly, over aenvironments. Here, we evaluated the robustness of the IFN
large parameter range of virus infectivity (measured®y, IFN  response against variations in two assumptions in our model to
protection of susceptible cells works much more e ectively ia th understand how this collective host cell response work e etyiv
GR network than in the ER network. As shown Figure 2A,  despite heterogenous host environments.
the IFN response halts infection such that the total number of We rst focused on one particular parameter that relates
infected cells are kept at very low levels for a much wider @angio the host tissue environment in our model: the diusion
of virus infectivity. IFN protection also leads to a much lawe coe cient of viruses and IFNs, i.e., the radius of the cellice
total number of protected cells in the GR network than in theedges (contacts) in the GR network. Due to di erences in the
ER network Figure 2B). This conclusion holds true as long as viscosity of the uid in the tissue and the layout of target
the individual-cell e ectiveness of the IFN signaling (measl  cells, the ratio of the IFN diusion over the virus di usion
as Rr; dened in Methods) is suciently high, e.g., when and thus the ratio of the numbers of target cells they reach
Re > R (Figure S). may di er in di erent tissue compartments. Below, we evaluate
To understand why IFN protection of target cells workspgyy the e ectiveness of the overall IFN response changes with
well in the GR network, we show two simulation realizationschanges in these ratios. In the analysis, we varied the sadiu
using networks assuming two ER graphs and two GR graphs {f the |FN di usion in the protection layer i; de ned in
Flgures 3AB respec_twely_. In the nework with two ER graphSMethods), and assumed that the individual-cell e ectivenelss o
(Figure 3A), connections/links between nodes are random. A he IFN signalingRe, is constant. In this way, when the radius

a result, infection can propagate until most cells are eitheps \en i usion increases, the average degree of nodes in the
protected or infectedfrecovered. _In cor_1trast, C(?”S in thk G protection layer Kg) increases; however, the protection rate per
network are connected only to neighboring cells in spacendf t contact decreases. We explored how the nal fraction of itiéec

IFN response is strong enough, the IFN signaling can build u;?_z(l ) changes with the ratio of the radius of IFN di usion

an outer layer of protected cells which e ectively contains theover the radius of virus di usionse/r,. We found that there
infection near the site of initial infection. As a result, stoof exists an optimal ratio, such that the total fraction of irtiea
thg cel_ls (outsidg of the area of infection) stay suscepiifiieout is minimized Figure SJ. Although the exact optimal ratio is
being infected Iflgure 3B). Ov.erall,. the results suggest t.hat theparameter dependent, generally it occurs when the ratie is
IFN response, 1.e., the.IFN signaling to protect susceptlu.le, €€ i.e., the radius of IFN di usion is similar or larger than thadius
works extremely e ectively when the virus spread spatially, &z \;irs infection. In general, wheR: > R, there exists a

likely scenario for infections in tissues. wide range of ratios of IFN di usion over virus di usion that &

. IFN can suppress the virus infection below a very small fractio
Robustness of the IFN Response to Virus (blue areas irFigure 4). This suggests that as long as the IFN

Infection in Tissue response is e ective and di uses similarly or faster than vesis
The IFN response is a general response strategy employed tiyg IFN response is in general robust against variations in the
di erent types of host cells to prevent or suppress infections ofFN di usion.
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FIGURE 4 | The effectiveness of the collective host cell IFN response isbust against variations in the ratio of the IFN diffusion @v the virus diffusion in networks
with two GR graphs. (A) The nal sizes (fractions) of cells that are infected (and ultately dead) at the end of the infectionR(1 ) (color) for different virus infectivity
(measured byR)) and the individual-cell effectiveness of the IFN signalinBr. The ratio of the average degree in the protection layer ovehe average degree in the
infection layer,ke=k; is one. (B,C) The same plots as panel A except thakg=k; D 10 and 20, respectively. In general, across the different rats of kg =k, the IFN
response effectively suppresses virus spread (loR(1 ) values; blue areas in the plots) as long aBr > R,.

FIGURE 5 | Heterogeneity in host cell susceptibility reduces the tolssize of
infected cells.(A) The nal sizes (fractions) of infected cells at the end of
infection [AverageR(1 )], in a model using two identical layers of ER graphs.
Results are average of 1,000 simulations. Colored lines swsimulations
assuming different levels of heterogeneities in host-cedusceptibility. The
heterogeneity is characterized by a gamma distribution witthe shape
parameterk and scale parameters . Note, the lower the value ofk, the more
heterogeneous the host cell susceptibility(B) The corresponding nal sizes
(fractions) of protected cells at the end of infectionP(1 ), in simulations shown
in (A). (C,D) Similar plots as in(A,B), respectively, except that the model
assumes GR graphs in the network. The individual-cell efféigeness of the IFN
signaling, Rg is set to seven. The average degree of the networks is set to 40
such that the value ofR, reaches 10 in simulations assuming D 0.1 and

D 20.

infection (25-28). To evaluate the consequences of heterogenous
host cell susceptibility to infection, we modi ed our model
simulation to assume that each cell has a susceptibility drawn
from a gamma distribution (instead of being the same), while
keeping the rate of protection by IFNs, constant (see Methods).
The simulation results using ER and GR networks show that in
general, the more heterogenous the host cell susceptibiléy; (i
lower k values), the lower the nal fraction of infectioR(1 )
(Figures 5A,Q. This is because when host cell susceptibility is
extremely heterogenous (e.g., the shape paranief@r0.1 in

the gamma distribution inFigure 5), the infection is driven a
small fraction of highly susceptible cells. For the remainargé
fraction of cells, they are much less likely to be infectechtha
protected. Overall, this leads to a small fraction of cells ¢pein
infected, yet the fraction of protected cefgl ) remains similar
across simulationsHigure 5). Therefore, the IFN response is
e ective to suppress viral infection when the susceptibilitho$t
cells is heterogenous.

DISCUSSIONS AND CONCLUSIONS

Here, we use a multiplex network approach to show how
the collective host cell IFN response can e ectively and
robustly halt/suppress virus spread especially when viruses
spread spatially. For a wide variety of viral infections, idahg

in uenzainfection 22), HIV infection (29), mosquito borne viral
infection, such as dengus@ and zika (1), the site of entry

is at the epithelium where target cells for infection are splgtia
arranged. The spread of viruses is thus expected to be a spatial
process, i.e., infected cells only further infect a nite rioen

of neighboring cells. We found that in this case, IFNs di uses
and signal to susceptible cells further away from infection,

In the analysis above, we assumed in the model that the hosthich builds up an outer layer of protected cells to contain
cells are a homogenous population of cells; whereas in realitypfection locally. We also found that the collective IFNpease

viruses typically infect a wide range of host cells and thé telss
likely exhibit widely di erent levels of susceptibility tofection,

is highly e ective and robust against variations in parameter
values that represent heterogenous host environments. This

e.g., as a result of heterogenous expression of receptorgdbr vwe argue is a property that allows the IFN response to be a
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general response employed by dierent types of host cells ihost cells. Therefore, experimental studies that examire th
peripheral tissues to respond to a wide variety of viruses toontact structure and topology for an infection process would
prevent viral establishment and invasion of a host at theahit help to parameterize the model to make precise predictions. Here
site of the infection. our work considered two distinct scenarios of the topology of
During systematic infection, viral infection process can behe spreading process, i.e., the random (ER) network and the
spatial or non-spatial. For viruses like HIV, infection in the spatial (GR) network. An actual infectioim vivo may involve
blood and in the lymph nodes occurs among host cells thaboth spatial and non-spatial contacts. For example, it has been
move around and contact each other randomly, the infectiorshown HCV mostly spread to neighboring cells, forming clusters
process may be better modeled using a random (ER) networkf infected hepatocytes in the liver; while it is also able to
We show that in this case, the critical parameter that deteagai have a long-range dispersal to hepatocytes through blood ow
the e ectiveness of IFN protection of target cells is the samify (23 32). Similar patterns of foci of infection are also observed
between the infection layer and the protection lay2f)( The for in uenza virus (22). Further work is warranted to consider
higher the similarity, the more e ective the IFN response. Thenetwork structures that incorporate both spatial spread and
IFN response can halt/suppress infection by directly competingandom spread, and evaluate the e ectiveness of IFN response
with viruses at each individual cell level such that the nembf  in those settings.
target cells that each infected cell can infect is reducednfany Given that the IFN response is a highly optimized and highly
other viruses, e.g., inuenza virug%, 24) and HCV (23, 32), e ective general response against virusgs e argue that the
spatial viral spread may be prevalent throughout the infectiorstrategies employed by IFN and the results derived from this
course, if not the only infection mode. work could shed light on or lead to solutions to problems ineth
The ndings of our study, especially that IFN responsedisciplines. For example, network models are frequently used i
is e ective when infection spreads in a spatial manner, aréghe modeling of epidemics to understand how infection dynasmic
consistent with a wide range of vivo andin vitro observations. or control strategies are impacted by network topologigé—(
For example, imaging of liver biopsy from patients chronically36). Furthermore, we speculate that the understanding of the
infected with hepatitis C virus (HCV) showed that HCV infedte population IFN response may lead to bio-inspired strategies for
cells form clusters and that IFN stimulated genes are highlgontrolling rumor spreading in social networks or cyberatta
expressed in infected cells as well as the surrounding suBleept in computer networks.
cells. This strongly suggests e ective IFN response to caimstr
cell-to-cell spatial spread in the live?d). In another study 83, AUTHOR CONTRIBUTIONS
to understand the evolutionary trade-o of viral suppressioh
the IFN response, Domingo-Calap et al. compared the spread of¥H and RK derived and analyzed the theoretical models. YH
wild-type strain of the vesicular stomatitis virus to a mutatrain -~ conducted the computer simulations. All authors analyzed th
that stimulates stronger IFN response than the wild-type. Realata, wrote and edited the manuscript and contributed to the
time uorescence microscopy showed that in contrast to agfiast development of ideas.
and homogenous spread of the wild-type virus in monolayer
host cells, the mutant viruses spread slower and infectdd ceFNDING
form clusters. This again suggests that the IFN responsgeréey
by the mutant acts to constrain infection. Interestinglyhem  This work is funded by the DARPA INTERCEPT program
the monolayer spatial structure of host cells is disrupted; th(Contract No. W911NF-17-2-0034) and the Army Research
mutant grew faster than the wild-type in well-mixed culture. O ce under Grant W911NF-17-1-0087.
This is consistent with the results we show in this study
that spatial structure is a key determinant of the e ectivenesACKNOWLEDGMENTS
of the IFN response. Overall, these experimental obsertion
support our model predictions, and thus, our model serves &Ve thank Barbara Sherry for extensive discussions and inputs
useful tool to understand the quantitative principles of tieNl  throughout the project.
response. These understandings may lead to development of
e ective therapies/vaccines to prevent virus transmissiod anSUPPLEMENTARY MATERIAL
infection (5-8).
Overall, our results suggest that considering the topologfhe Supplementary Material for this article can be found
of the spreading process is critical to the understanding andnline at: https://www.frontiersin.org/articles/10.388nmu.
prediction of the impact of collective IFN response arisingiiro  2019.01736/full#supplementary-material
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